Feature Selection Menggunakan Binary Wheal Optimizaton Algorithm (BWOA) pada Klasifikasi Penyakit Diabetes

Lastri Widya Astuti, Imelda Saluza, Evi Yulianti, Dhamayanti Dhamayanti

Abstract


Diabetes Mellitus (DM) is a chronic disease characterized by blood glucose (blood sugar) levels exceeding normal, i.e. blood sugar levels being equal to or more than 200 mg/dl, and fasting blood sugar levels being above or equal to 126 mg/dl. The increase in the number of people with diabetes is due to delays in detection. Utilization of machine learning in helping to establish a fast and accurate diagnosis is one of the efforts made in the health sector. One of the important steps to produce high classification accuracy is through the selection of relevant features. The problem in feature selection is dimensionality reduction, where initially all attributes are required to obtain maximum accuracy while not all features are used in the classification process. This study uses the Binary wheal Optimization Algorithm (BWOA) as a feature selection method to increase accuracy in the classification of diabetes mellitus. The use of metaheuristic algorithms is an alternative to increase computational efficiency and avoid local minimums. The BWOA algorithm reduces the 8 attributes in the dataset to the 3 best attributes that are able to represent the original dataset. The results showed that from the six classification methods tested, namely: K-NN, Naïve Bayes, Random Forest, Logistics Regression, Decision Tree, Neural Network. then the three logistic regression methods, naive Bayes and neural network are in good classification criteria based on Area Under Curve (AUC) while the calculation of the accuracy value shows an average of above 70%.

 

Keywords : Feature Selection, Classification, Diabetes Mellitus, Accuracy, Area Under Curve (AUC)


Full Text:

PDF

References


Argina, A. M. (2020) ‘Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes’, Indonesian Journal of Data and Science, 1(2), pp. 29–33. doi: 10.33096/ijodas.v1i2.11.

Astuti, L. W. (2019) ‘Ekstrasi Fitur Citra MRI Otak Menggunakan Data Wavelet Transform (DWT) untuk Klasifikasi Penyakit Tumor Otak’, Jurnal Ilmiah Informatika Global, 10(2), pp. 80–86. doi: 10.36982/jig.v10i2.854.

Astuti, L. W. et al. (2020) ‘Optimalisasi Klasifikasi Kanker Payudara Menggunakan Forward Selection pada Naive Bayes’, Jurnal Informatika Global, 11(2), pp. 63–67.

Azrimaidaliza (2011) ‘Asupan Zat Gizi dan Penyakit Diabetes Mellitus’, Jurnal Kesehatan Masyarakat, 6(1), pp. 36–41.

Eid, H. F. (2018) ‘Binary whale optimisation: an effective swarm algorithm for feature selection’, International Journal of Metaheuristics, 7(1), p. 67. doi: 10.1504/ijmheur.2018.10012912.

Ente, D. R. et al. (2020) ‘Klasifikasi Faktor-Faktor Penyebab Penyakit Diabetes Melitus Di Rumah Sakit Unhas Menggunakan Algoritma C4.5’, Indonesian Journal of Statistics and Its Applications, 4(1), pp. 80–88. doi: 10.29244/ijsa.v4i1.330.

Fitriyanti, M. E., Febriawati, H. and Yanti, L. (2019) ‘Pengalaman Penderita Diabetes Mellitus dalam Pencegahan Ulkus Diabetik’, Jurnal Keperawatan Muhammadiyah Bengkulu, 7(2), pp. 99–105. doi: 10.36085/jkmu.v7i2.481.

Hussien, A. G. et al. (2020) ‘Binary whale optimization algorithm for dimensionality reduction’, Mathematics, 8(10), pp. 1–24. doi: 10.3390/math8101821.

Istianah, I., Septiani and Dewi, G. K. (2020) ‘Mengidentifikasi Faktor Gizi pada Pasien Diabetes Mellitus Tipe 2 di Kota Depok Tahun 2019’, Jurnal Kesehatan Indonesia (The Indonesian Journal of Health), X(2), pp. 72–78.

Kahya, M. A., Altamir, S. A. and Algamal, Z. Y. (2021) ‘Improving whale optimization algorithm for feature selection with a time-varying transfer function’, Numerical Algebra, Control and Optimization, 11(1), pp. 87–98. doi: 10.3934/naco.2020017.

Mardiana, T., Ditama, E. M. and Tuslaela, T. (2020) ‘an Expert System for Detection of Diabetes Mellitus With Forward Chaining Method’, Jurnal Riset Informatika, 2(2), pp. 69–76. doi: 10.34288/jri.v2i2.121.

Suwarno, (2016) ‘Jurnal MIPA’, 39(2), pp. 98–106.

Moh. Jasri (2017) ‘Klasifikasi Penyakit Diabetes Mellitus Tipe 2 Dengan Metode Algoritma C4.5’, 5.

Mucholladin, A. W., Abdurrachman Bachtiar, F. and Furqon, M. T. (2021) ‘Klasifikasi Penyakit Diabetes menggunakan Metode Support Vector Machine’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(2), pp. 622–633. Available at: http://j-ptiik.ub.ac.id.

Najib, A., Nurcahyono, D. and Setiawan, R. P. P. (2019) ‘Klasifikasi Diagnosa Penyakit Diabetes Mellitus (Dm) Menggunakan Algoritma C4.4’, Just TI (Jurnal Sains Terapan Teknologi Informasi), 11(2), p. 47. doi: 10.46964/justti.v11i2.153.

Nugraha, F. S., Shidiq, M. J. and Rahayu, S. (2019) ‘Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Kanker Payudara’, Jurnal Pilar Nusa Mandiri, 15(2), pp. 149–156. doi: 10.33480/pilar.v15i2.601.

Ridwan, A. (2020) ‘Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus’, Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 4(1), pp. 15–21. doi: 10.47970/siskom-kb.v4i1.169.

Sathya, M. and Manju Priya, S. (2020) ‘Modified whale optimization algorithm for feature selection in micro array cancer dataset’, International Journal of Scientific and Technology Research, 9(3), pp. 549–556.

Sayed, G. I., Darwish, A. and Hassanien, A. E. (2020) ‘Binary Whale Optimization Algorithm and Binary Moth Flame Optimization with Clustering Algorithms for Clinical Breast Cancer Diagnoses’, Journal of Classification, 37(1), pp. 66–96. doi: 10.1007/s00357-018-9297-3.

Tawhid, M. A. and Ibrahim, A. M. (2020) ‘Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm’, International Journal of Machine Learning and Cybernetics, 11(3), pp. 573–602. doi: 10.1007/s13042-019-00996-5.

Yunita, F. (2016) ‘Sistem Klasifikasi Penyakit Diabetes Mellitus Menggunakan Metode K-Nearest Neighbor ( K-NN )’, Bappeda, 2, pp. 223–230.

Yusnanda, F., Rochadi, R. K. and Maas, L. T. (2019) ‘Pengaruh Riwayat Keturunan terhadap Kejadian Diabetes Mellitus pada Pra Lansia di BLUD RSUD Meuraxa Kota Banda Aceh Tahun 2017’, Journal of Healthcare Technology and Medicine, 4(1), p. 18. doi: 10.33143/jhtm.v4i1.163.




DOI: http://dx.doi.org/10.36982/jiig.v13i1.2057

Refbacks

  • There are currently no refbacks.



Editorial Office

  • study program in visual communication design
  • Universitas Indo Global Mandiri, Palembang
  • Jl. Jend. Sudirman KM.4 No.629, 20 Ilir D. IV, Kec. Ilir Tim. I, Kota Palembang, Sumatera Selatan 30129.
  • Telpon/Fax: +62711-3227-05
  • Contact :Ahmad Sanmorino (087898273838)
 
 
 
 
   
  

Jurnal Informatika Global

E-ISSN2477-378 P-ISSN: 2302-500X, http://ejournal.uigm.ac.id/index.php/IG

MK licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.