Sistem Deteksi Kualitas Buah Jambu Air Berdasarkan Warna Kulit Menggunakan Algoritma Principal Component Analysis (Pca) dan K-Nearest Neigbor (K-NN)
DOI:
https://doi.org/10.36982/jiig.v11i2.1223Abstract
One form of artificial intelligence is the automatic detection of images. so the system can determine precisely the type of image or it can be called computer vision. Water guava fruit is a fruit that is often encountered in Indonesia, but many of the water guavas in the community are of poor quality, thus detrimental to consumers. Therefore we need a system that can detect the quality of the water guava. The Principal Component Analysis (PCA) algorithm and the k-nearest neighbor (k-NN) algorithm can be combined to do this job. PCA is an algorithm that can convert to a group of data that is initially correlated into uncorrelated data (Principal Component). The number of Principal Components generated is the same as the original data, but can be reduced to a smaller amount and is still able to represent the original data well. Meanwhile, k-NN is a method for classifying objects based on learning data that is closest to the object. The research model used in this research is a prototype, and the development tools used are UML. In making the water guava quality detection system, the MATLAB programming language is used, and the test uses the blacbox method. The result of this system is that the system is able to produce output in the form of quality classification of water guava fruit automatically.
Keywords: Computer vision, PCA, k-NN
References
Amin, R. A., 2016, Prototype alat pembersih debu menggunakan media smartphone berbasis arduino uno, SMAN 1 Tangerang, Tanggerang.
Dian Novianto., Yohanes Setiawan. 2018. Aplikasi Pengamanan Informasi Menggunakan Metode Least Significant Bit (Lsb) dan Algoritma Kriptografi Advanced Encryption Standard (AES) Jurnal Ilmiah Informatika Global, No.2, Vol.09,: http://ejournal.uigm.ac.id/index.php/IG/article/view/561
Hidayat, Rahmat. 2017. Matlab Pada Sistem Pemrosesan Sinyal Dan Komunikasi Digital: Simulasi berbagai aplikasi teknik. Penerbit Gunung Samudra: Malang.
http://library.binus.ac.id/eColls/eThesisdoc/Bab2/2008-1-00110-IF%20Bab%202.pdf, diakses tanggal 20 Januari 2019.
http://www.ruangtani.com/hama-dan-penyakit-pada-tanaman-jambu/, diakses tanggal 20 Januari 2019.
https://economictimes.indiatimes.com/definition/software-testing, diakses tanggal 15 Januari 2019.
Pamungkas, Adi. 2020. Klasifikasi Jenis Sayuran Menggunakan Algoritma PCA dan KNN. https://pemrogramanmatlab.com/2019/01/01/klasifikasi-jenis-sayuran-menggunakan-algoritma-pca-dan-knn/, diakses tanggal 20 Januari 2020.
Pamungkas, Adi. 2020. Data Mining Menggunakan Matlab K-Nearest-Neighbor Menggunakan Matlab. https://pemrogramanmatlab.com/data-mining-menggunakan-matlab/k-nearest-neighbor-knn-menggunakan-matlab/, diakses tanggal 20 Januari 2020.
Rizky, Soetam, 2011, Konsep Dasar Rekayasa Perangkat Lunak, PT. Prestaso Pustakarya, Jakarta.
Roger, S. Pressman, Ph.D., 2012, Rekayasa Perangkat Lunak (Pendekatan Praktisi), Ed.7, diterjemahkan oleh Andi, Yogyakarta.
Shapiro, Linda G dan G.C.Stockman. 2001. Computer vision. Prentice Hall: New York.
Utami, Ema., Sukrisno. 2005. 10 Langkah Belajar Logika dan Algoritma. menggunakan Bahasa C dan C++ di GNU Linux. Penerbit Andi: Yogyakarta.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.