Sistem Penentuan Lokasi Pusat Layanan Terpadu Bagi Penderita Penyakit Demam Berdarah Dengan Menggunakan K-Means Clustering

Authors

  • Iski Zaliman Universitas Bina Darma Palembang
  • Tri Basuki Kurniawan Universitas Bina Darma Palembang
  • Darius Antoni Universitas Bina Darma Palembang

DOI:

https://doi.org/10.36982/jiig.v11i2.1225

Abstract

Puskesmas is a functional organizational unit that organizes comprehensive, integrated, equitable health efforts that are acceptable and affordable to the community. The function of the puskesmas is to provide health services to the community through the Community Health Efforts (UKM) and Individual Health Efforts (UKP) programs which are at the forefront of providing health services to the community, especially the prevention and treatment of diseases. The disease is divided into 3 types namely infectious diseases or diseases caused by germs that attack the human body. This research will attempt to handle infectious diseases, namely dengue hemorrhagic fever (DHF). Dengue fever or dengue fever (abbreviated as DHF) is an infection caused by dengue virus. Mosquitoes or some types of mosquitoes transmit (or spread) dengue virus. Then a computerized analysis using data mining software that supports the flow of data and information in accordance with the needs of handling dengue fever from these processes and the selection of a more suitable method is used that is using K-Means clustering.

Keywords : The location determination system, dengue faver, K-Means Clusterring

Author Biographies

Iski Zaliman, Universitas Bina Darma Palembang

Magister Teknik informatika

Tri Basuki Kurniawan, Universitas Bina Darma Palembang

Magister Teknik informatika

Darius Antoni, Universitas Bina Darma Palembang

Magister Teknik informatika

References

Al Fatta, Hanif. 2007. Analisis dan Perancangan Sistem Informasi untuk Keunggulan Bersaing Perusahaan dan Organisasi Modern. Yogyakarta : Penerbit ANDI.

Bastian, Ade. 2018. Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka. Majalengka: Universitas Majalengka

Chopra, S. and Meindl, P. 2001. Supply Chain Management : Strategy, Planning and Operation. New Jersey : Prentice-Hall, Inc.

Feng, M., & Wang, Z. 2011. A genetic k-means clustering algorithm based on the optimized initial centers. Computer and Information Science, 4(3).

Hiswani. 2003. “Pencegahan dan Pemberantasan Demam Berdarah Dengue (DBD)â€. Tersedia di : http://www.library.usu.ac.id/download/fkm/fkm-hiswani9.pdf

Mannino,M.V.2001. Database Application Development & Design. New York : McGraw-Hill

Martinez, R. 2007. “Geographic Information System for Dengue Prevention and Controlâ€. Scientific Working Group, Report on Dengue, 1-5 October 2006, Geneva, Switzerland, Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases. Tersedia di : http://www.who.int/tdr/publications/public ations/ swg_dengue_2 .htm

McLeod, Jr., R. dan Schell, G. P. 2008. Sistem Informasi Manajemen Terjemahan. Jakarta : Salemba Empat.

Rob, P. and Coronel, C. 1993. Database Systems : Design Implementation and Management. Belmont: Wadsworth.

Siregar, F. A. 2004. “Epidemiologi dan Pemberantasan Demam Berdarah Dengue di Indonesiaâ€. Tersedia di : http://library.usu.ac.id/download/fkm/fkm-fazidah3.pdf

Wahyudi, Bambang. 2008. Konsep Sistem Informasi dari BIT Sampai ke Database. Yogyakarta : Andi.

Waworuntu, M N Variestha. 2018. Penerapan Metode K-Means Pemetaan Calon Penerima Jamkesda. Banjarbaru: STMIK Banjarbaru

Yourdon, Edward. 2006. Just Enough Structured Analysis. Tersedia di : http:// www.yourdon.com/ jesa/pdf/JESA_pj.pdf [12 Maret 2000]

Downloads

Published

2020-12-18

How to Cite

Zaliman, I., Kurniawan, T. B., & Antoni, D. (2020). Sistem Penentuan Lokasi Pusat Layanan Terpadu Bagi Penderita Penyakit Demam Berdarah Dengan Menggunakan K-Means Clustering. Jurnal Ilmiah Informatika Global, 11(2). https://doi.org/10.36982/jiig.v11i2.1225

Issue

Section

Articles
external-statistic-user-interface-budi-arianto Abstract views: 587 / PDF downloads: 526