PERBANDINGAN TINGKAT AKURASI JENIS CITRA KEABUAN , HSV, DAN L*a*b* PADA IDENTIFIKASI JENIS BUAH PIR

Authors

  • Mulia Octavia STMIK GI MDP
  • Jesslyn K STMIK GI MDP
  • Gasim Gasim STMIK GI MDP

DOI:

https://doi.org/10.36982/jiig.v7i1.143

Abstract

Image processing has been commonly used in automatic object identification. These are some methods that can be used for automatic object identification, such as LVQ, K-NN, SVM, and Neural Network. This research specifically bring out the topic about the level accuracy comparison in identification of pear variety using grayscale, HSV, and L*a*b* images in aim to get the best image type for pear image identification using neural network. The feature are gray level co-occurrence matrix feature (energy, entropy, homogeneity, and contrast) from canny edge detection’s image and also color feature. Based on image examination result, grayscale reached its best accuracy for 90% on MSE 1e-10 with 10 hidden layer neurons, HSV reached its best accuracy for 100% on MSE 1e-5 with 20 hidden layer neurons, L*a*b* reached its best accuracy for 100% on MSE 1e-5 with 15 hidden layer neurons. HSV and L*a*b* give the better accuracy for pear variety image identification than grayscale.

Keyword:Image Processing, Pear, Neural Network, Identification, Gray Level Co-occurrence Matrix, Canny, Color.

Author Biographies

Mulia Octavia, STMIK GI MDP

Program Studi Teknik Informatika

Jesslyn K, STMIK GI MDP

Program Studi Teknik Informatika

Gasim Gasim, STMIK GI MDP

STMIK GI MDP

References

J. Laseduw, “Kandungan dan Manfaat Buah Pir untuk Kesehatanâ€, http://www.necturajuice.com, 6 September 2015.

Agmalaro, MA, Kustiyo, A &AR. Akbar,“Identifikasi Tanaman Buah Tropika Berdasarkan Tekstur Permukaan Daun Menggunakan Jaringan Syaraf Tiruanâ€, Jurnal Ilmu Komputer Agri - Informatika, vol. 2, no. 2, pp. 73-82, 2013

D. Savakar, “Identification and Classification of Bulk Fruits Images Using Artificial Neural Networksâ€, International Journal of Engineering and Innovative Technology, vol. 1, no. 3, pp. 36-40, 2012

Danti. A, Madgi, M & Anami, BS, “A Neural Network Based Recognition and Classification of Commonly Used Indian Non Leafy Vegetablesâ€, Modern Education and Computer Science, no. 10, pp. 62-68, 2014

D. Putra, “Pengolahan Citra Digitalâ€, Yogyakarta : Andi Offset, 2010

E. Prasetyo, “Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlabâ€, Yogyakarta : Andi Offset, 2011.

Rashmi, M. Kumar, R. Saxena, “Algorithm and Technique on Various Edge Detection : A Survey, Signal and Image Processing : An International Journal†, vol. 4, no. 3, pp. 65-75, 2013

Downloads

Published

2016-07-23

How to Cite

Octavia, M., K, J., & Gasim, G. (2016). PERBANDINGAN TINGKAT AKURASI JENIS CITRA KEABUAN , HSV, DAN L*a*b* PADA IDENTIFIKASI JENIS BUAH PIR. Jurnal Ilmiah Informatika Global, 7(1). https://doi.org/10.36982/jiig.v7i1.143

Issue

Section

Articles
external-statistic-user-interface-budi-arianto Abstract views: 733 / PDF downloads: 676