Optimalisasi Klasifikasi Kanker Payudara Menggunakan Forward Selection pada Naive Bayes
DOI:
https://doi.org/10.36982/jiig.v11i2.1235Keywords:
Cancer, breast, naive bayes, forward selection, accuracyAbstract
Breast cancer is a type of malignant tumor which is still the number one killer where the process of spread or metastasis takes a long time. The number of breast cancer sufferers increases every year so that if detected or caught early, prevention can be done early so as to reduce the number of breast cancer sufferers. To reduce the risk of increasing the number of cancer patients, it is necessary to do early detection, several methods can be used to assist the early detection process such as cancer screening, or computational methods. Several machine learning methods that have been chosen to solve cases of breast cancer prediction, especially the classification algorithm, including Naive Bayes have the advantage of being simple but having high accuracy even though they use little data. Weaknesses in Naive Bayes, namely the prediction of the probability result is not running optimally and the lack of selection of relevant features to the classification so that the accuracy is low. This research is intended to build a classification system for detecting breast cancer using the Naive Bayes method, by adding a forward selection method for feature selection from the many features that exist in breast cancer data, because not all features are features that can be used in the classification process. The result of combining the Naive Bayes method and the forward selection method in feature selection can increase the accuracy value of 96.49% detection of breast cancer patients.
Â
References
Sarina, et al,.(2020). Faktor Yang Berhubungan Dengan Perilaku Sadari Sebagai Deteksi Dini Kanker Payudara Pada Mahasiswi FKM UNHAS, Hasanuddin Journal of Public Health Volume 1 Issue 1 | Februari 2020 | Hal 61-70 DOI: http://dx.doi.org/10.30597/hjph.v1i1.9513
Kementerian Kesehatan Republik Indonesia.(2015), Pedoman Teknis Pengendalian Kanker Payudara Dan Kanker Leher Rahim. Jakarta: Departemen Kesehatan
American Cancer Society. 2016. Breast Cancer Fact and Figures 2016. [Online] Available at http://www.cancer.org/research/cancerfactsfigure.
Tapak, L., Shirmohammadi-Khorram, N., Amini, P., Alafchi, B., Hamidi, O., & Poorolajal, J. (2018). Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clinical Epidemiology and Global Health. https://doi.org/10.1016/j.cegh.2018.10.003
Jafari-Marandi, R., Davarzani, S., Soltanpour Gharibdousti, M., & Smith, B. K. (2018). An optimum ANN-based breast cancer diagnosis: Bridging gaps between ANN learning and decision-making goals. Applied Soft Computing Journal, 72, 108–120. https://doi.org/10.1016/j.asoc.2018.07.060
Ellmann, S., Seyler, L., Evers, J., Heinen, H., Bozec, A., Prante, O., … Bäuerle, T. (2019). Prediction of early metastatic disease in experimental breast cancer bone metastasis by combining PET/CT and MRI parameters to a Model-Averaged Neural Network. Bone, 120, 254–261. https://doi.org/10.1016/j.bone.2018.11.008
Agustin, Riska, et al, (2019), Metode Naive Bayes Dalam Mendeteksi Sel Kanker Payudara, Jurnal Statistika dan Aplikasinya (JSA) Vol. 3 No.1, Juni 2019
Fanani, Rudi .(2020). Algoritma Naïve Bayes Berbasis Forward Selection Untuk Prediksi Bimbingan Konseling Siswa, Jurnal Disprotek Volume 11 Nomor 1, Januari 2020, ISSN. 2088-6500 e-ISSN. 2548-4168
Nugroho, MF, et al.(2017).Fitur Seleksi Forward Selection Untuk Menetukan Atribut Yang Berpengaruh Pada Klasifikasi Kelulusan Mahasiswa Fakultas Ilmu Komputer UNAKI Semarang Menggunakan Algoritma Naive Bayes, Jurnal Informatika Upgris Vol. 3, No. 1, (2017) P/E-ISSN: 2460-4801/2447-6645
Rafiska, R., dkk. (2018).Analisis Rekam Medis untuk Menentukan Pola Kelompok Penyakit Menggunakan Algoritma C4.5, 391-396.
Septiani, W. D. (2017).Kompirasi Metode Klasifikasi Data Mining Algoritma C4.5 dan Naive Bayes untuk Memprediksi Penyakit Hepatitis, 76-84.
Lieng, J., Kencana, I., & Oka, T. 2014. Analisis Sentimen Menggunakan Metode Naive Bayes Classifier dengan Seleksi Fitur Chi Square. Jurnal Matematika Vol. 3, 92-99.
Zhu, M., & Song, J. (2013). An embedded backward feature selection method for MCLP classification algorithm. Procedia Computer Science, 17, 1047–1054. https://doi.org/10.1016/j.procs.2013.05.133
R. Payam, Tang. L (2008), “Cross Validationâ€, Arizona State University, File path://ppdys1108/womat3/production/PRODEN/000000005/0000008302/0000000016/0000875816.3D
Kemal Polat, Bayram Akdemir, Salih Güne. (2008), “Computer aided diagnosis of ECG data on the least square support vector machineâ€, Digital Signal Process. 18, hal 25–32.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.