Transformasi Geometri Rotasi Citra Digital Untuk Mendapatkan Kompresi Optimal Menggunakan Metode Lossless Dan Lossy
DOI:
https://doi.org/10.36982/jiig.v12i1.1540Abstrak
Data has a fairly important meaning, because it contains the information needed. Besides being important, the process
of data exchange and storage certainly requires space and requires high costs. For this reason, data compression is an
interesting topic for continuous research. The success of previous research in obtaining optimal compression, it will be
more interesting, if tested on the Lossless and Lossy Compression Methods, which of the two methods results in more
optimal compression. The amount of the compression ratio without the image rotation process. For regular images
obtained Huffman Compression Ratio 48.7076% and Wavelet Compression 47.3888%. If we compare the compression
ratio by comparing the initial file size without playback compared with the final file size after 90 degrees of playback,
the ratio is 61.03%. Meanwhile, for irregular images, a ratio of 49.79% was obtained at 180 degrees of image rotation.
The results of compression, both without and with rotation, Wavelet Compression is more optimal than Huffman
Compression.
Keywords: Digital Image, Test Image, Lossless, Lossy, Huffmann Algorithm, Haar Wavelet
Referensi
Atmaja, I. M. A. D. S. (2018). Kompresi Citra Medis
Menggunakan Packet Wavelet Transform Dan Run
Length Encoding. Matrix : Jurnal Manajemen
Teknologi Dan Informatika, 8(1), 10.
https://doi.org/10.31940/matrix.v8i1.739
Hastha, S., & Zulkifli. (2020). Transformasi Citra Digital
Untuk Mendapatkan Kompresi Optimal Dengan
Metode Lossless. Jurnal Teknomatika, 10(02), 183–
http://ojs.palcomtech.com/index.php/teknomatika/is
sue/view/25
Ikhwan, A. (2017). Aplikasi Metode Transformasi
Wavelet Diskrit untuk Kompresi Citra pada
Pengolahan Citra Digital. Jurnal SAINTIKOM,
(1), 31–40.
Mulyanto, A. (2020). Tranformasi Geometri. Studio
Belajar.Com. www.studiobelajar.com/transformasi-
geometri/ Diakses 21 Desember 2020
Novamizanti, L., & Kurnia, A. (2015). Analisis
Perbandingan Kompresi Haar Wavelet Transform
dengan Embedded Zerotree Wavelet pada Citra.
Sari, Y. (2019). Implementasi Algoritma Transformasi
Wavelet Dan Metode Recursive Splitting Huffmann
Pada Kompresi Citra Rontgen. Majalah Inti, 6,
–369.
Tiyas. (2020). Transformasi Geometri. Yuksinau.
https://www.yuksinau.id/transformasi-
geometri/#3_Rotasi_(Perputaran) Diakses 26
Desember 2020
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.