Penerapan Data Mining untuk Memprediksi Jumlah Produk Terlaris Menggunakan Algoritma Naive Bayes Studi Kasus (Toko Prapti)
DOI:
https://doi.org/10.36982/jiig.v13i1.2060Abstrak
Toko Prapti is a small privately owned company that sells basic necessities,. So far, the prapti shop produces sales data every day, but the results obtained show that the prapti shop has not maximized the data so that it becomes a data accumulation. Therefore, the researcher conducted a study on product sales data by utilizing and applying data mining using the nave Bayes classifier algorithm to determine the interest in purchasing goods at the prapti shop. data. In this study, the author uses the waterfall system development method. The author implements this research using a web programming language, namely PHP, using the CodeIgniter framework with MySQl database. The system built with the nave Bayes algorithm includes product sales data, nave calculations of each attribute and reporting. This system produces 4 attributes that greatly affect the results of the classification. The attributes used in this research are the attributes are quarter 1, quarter 2, quarter 3 and quarter 4. Prediction results obtained using the nave Bayes algorithm produce information that can be used by stores to identify the best-selling products purchased by consumers so that it can help prapti shops to find and determine the target market more accurately. Sources of data taken from the previous 1 year with system accuracy using a confusion matrix resulted in 83.3% accuracy, 84.2% precision and 88.9% recall. Â Â
Â
Keywords : Data mining, Nave bayes Classifier, Code Igniter, Confusion Matrix
Referensi
Cobit, M. F. and Utami, E. (2019) ‘Jurnal Informasi Dan Komputer Vol : 7 No : 2 Thn .: 2019 Analisa Infrastruktur Teknologi Informasi Jurnal Informasi Dan Komputer Vol : 7 No : 2 Thn .: 2019’, pp. 9–18.
Fikri, A. and Verina, W. (2020) ‘Penerapan Data Mining Untuk Prediksi Penjualan Alat Medis Menggunakan Algoritma C4.5 Pt. Murni Indah Sentosa’, Infosys (Information System) Journal, 5(1), p. 70. doi: 10.22303/infosys.5.1.2020.70-83.
Hartanti, D. et al. (2021) ‘Penerapan Association Rule Menggunakan Apriori Untuk Rekomendasi Produksi Roti’, Bianglala Informatika, 9(1), pp. 17–23. doi: 10.31294/bi.v9i1.9941.
Mukminin, A. and Riana, D. (2017) ‘Komparasi Algoritma C4 . 5 , Naïve Bayes Dan Neural Network Untuk Klasifikasi Tanah’, Jurnal Informatika, 4(1), pp. 21–31. Available at: https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/1002.
Normawati, D. and Prayogi, S. A. (2021) ‘Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter’, Jurnal Sains Komputer & Informatika (J-Sakti), 5(2), pp. 697–711.
Novianto, D. (2016) ‘Implementasi Sistem Informasi Pegawai (Simpeg) Berbasis Web Menggunakanframework Codeigniter Dan Bootstrap’, Jurnal Ilmiah Informatika Global, 7(1), pp. 10–16. Available at: http://ejournal.uigm.ac.id/index.php/IG/article/view/153.
Nurajijah, N., Ningtyas, D. A. and Wahyudi, M. (2019) ‘Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree, Support Vector Machine Dan Naive Bayes’, Jurnal Khatulistiwa Informatika, 7(2), pp. 85–90. doi: 10.31294/jki.v7i2.6839.
Retno Tri Wulandari,S.Si., M. S. (2017) Data Mining. Gava Media. Yogyakarta: Gava media Yogyakarta.
Rizki, F., Faisol, A. and Santi Wahyuni, F. (2020) ‘Penerapan Metode Naive Bayes Untuk Memprediksi Penjualan Pada Ud. Hikmah Pasuruan Berbasis Web’, JATI (Jurnal Mahasiswa Teknik Informatika), 4(1), pp. 26–34. doi: 10.36040/jati.v4i1.2379.
Rosa, A. S. (2016) Rekayasa perangkat lunak terstruktur dan berorientasi objek.
Septyanto, A. W. (2021) ‘A Fuzzy Rule-Based Fog Cloud Computing untuk Menganalisis Faktor Penyebab Kematian Ibu Meninggal Masa Postpartum’, JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 8(4), pp. 1680–1692. doi: 10.35957/jatisi.v8i4.1262.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.