Analisis Dinamik Fondasi Mesin Generator Sets pada Power House Building Project Lube Oil Blending Plant
DOI:
https://doi.org/10.36982/jtg.v8i1.735Abstract
ABSTRACT
Generator set machine foundations in the Power House Building Project Lube Oil Blending Plant is located on Cilegon Industrial Estate Area (KIEC), Banten. Machine foundation is analyzed in three conditions to check the safety condition against the dynamic load. The first condition is the existing condition where the block foundation is not embedded in the ground. From the results of the analysis of this condition, the natural frequency value is 20,077 Hz. It is very close to frequency of machine foundation, although it is safe from resonance. The vertical and horizontal amplitude is safe because smaller than permission amplitude. In the second condition, the effect of the embedded block foundation is checked, the smaller natural frequency value 13,305 Hz is safe against resonance. The amplitude value obtained is also smaller. In the last condition analyzed the embedded block foundation without using piles to determine the effect of piles during the machine foundation system. Although the results of the analysis obtained a smaller natural frequency value of about 10,628 Hz but seen from its value of vertical and horizontal amplitude, the foundation without pile is not safe. In general, it can be concluded that the existing foundation is safe from dynamic load, but it would be better if the foundation of the block is embedded on the ground. The use of piles can reduce the amplitude value of machine foundation.
Keywords : machine foundation, dynamic analysis, generator sets
ABSTRAK
Fondasi mesin generator sets pada Power House Building Project Lube Oil Blending Plant berlokasi di Kawasan Industrial Estate Cilegon (KIEC), Banten. Analisis fondasi mesin dilakukan dengan tiga kondisi untuk mengecek keamanan fondasi terhadap beban dinamik. Kondisi pertama adalah kondisi eksisting dimana fondasi blok tidak tertanam dalam tanah. Dari hasil analisis kondisi ini didapatkan nilai frekuensi natural 20,077 Hz. Frekuensi natural tanah ini mendekati nilai frekuensi mesin, walaupun masih saman dari resonansi. Nilai amplitudo vertikal dan amplitudo horizontal aman karena lebih kecil dari nilai amplitudo izin. Pada kondisi kedua dicek pengaruh fondasi blok tertanam dan dihasilkan nilai frekuensi natural yang lebih kecil yakni 13,305 Hz dan aman terhadap resonansi. Nilai amplitudo yang didapat juga lebih kecil. Pada kondisi terakhir dianalisis fondasi blok tertanam tanpa menggunakan pile untuk mengetahui pengaruh pile pada sistem fondasi mesin. Walaupun dari hasil analisis didapat nilai frekuensi natural yang lebih kecil yakni sekitar 10,628 Hz, namun dilihat dari nilai amplitudo vertikal dan amplitudo horizontalnya, fondasi tanpa pile ini tidak aman. Secara umum dapat disimpulkan bahwa fondasi eksistingaman terhadap gaya dinamik, namun akan lebih baik jika fondasi blok tertanam dalam tanah. Penggunaan pile mampu memperkecil nilai amplitudo pada fondasi mesin.
Kata kunci : Fondasi mesin, analisis dinamik, generator setsReferences
ASTM D 422-63. Standard Test Method for Particle-Size Analysis of Soils. United States: Association of Standard Testing Material.
ASTM D 423-66. Method of Test for Liquid Limit of Soils. United States: Association of Standard Testing Material.
ASTM D 424-74. Standard Test Method for Plastic Limit and Plasticity Index of Soils. United States: Association of Standard Testing Material.
ASTM D 427-74. Standard Test Method for Shrinkage Limit of Soils. United States: Association of Standard Testing Material.
ASTM D 854-02. Standard TestMethod for Specific Gravity of Soil Solids by Water Pycnometer. United States: Association of Standard Testing Material.
ASTM D 2216-71. Method for Determination of Water (Moisture) Content of Soil by Microwave Oven Heating. United States: Association of Standard Testing Material.
ASTM D 2850-95. Standard Test Method for Unconsolidated-Undrained Triaxial CompressionTest on Cohesive Soils. United States: Association of Standard Testing Material.
Bowles, E Joseph, 1982. Foundation Analysis and Design. Singapore: Mc Graw-Hill.
Bowles, E Joseph dan J.K. Hainim, 1984. Sifat-Sifat Fisis dan Geoteknis Tanah. Jakarta: Penerbit Erlangga.
Das, Braja M., 1993. Principles of Soil Dynamics. USA: PWS-KENT Publishing Company.
Hammam, A.H. and M.Eliwa, 2013. Comparison Between Result of Dynamic & Static Moduli of Soil Determined by Different Methods. HBRC Journal. Elsevier, pp.144-149
Hardin, B.O. and Black, W.L., 1969. Closure to vibration modulus of normally consolidated clays. Journal of Soil Mechanics and Foundations Division, ASCE, vol. 95, no. SM6, pp. 1531-1537.
Hardin, B.O., and Drnevich, V.P., 1972. Shear Modulus and Damping in Soils: Design Equations and Curves. Journal of the Soil Mechanics and Foundation Division, ASCE 98 (SM7), pp.667-692.
Hardin, B.O. and Richart, F.E. Jr., 1963. Elastic wave velocities in granular soils. Journal of Soil Mechanics and Foundations Division, ASCE, vol. 89, no. SM1, pp. 33-65.
Hasancebi N., and Ulusay R. 2007. Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bull Eng Geol Environ 66(2):203–213.
Imai T., and Yoshimura Y., 1975. The relation of mechanical properties of soils to P and S-wave velocities for ground in Japan. Technical note OYO Corporation.
Irsyam, M., Andhika S., & Helmy D., 2008. Dinamika Tanah dan Fondasi Mesin. Bandung: Penerbit ITB.
Jinan Z., 1987. Correlation between seismic wave velocity and the number of blow of SPT and depth. Journal of the Chinese J Geotech Eng, ASCE, pp. 92-100.
Novak, M., and Beredugo, Y.O., 1972. Vertical Vibration of Embedded Footings, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.98, No.SM12, pp. 1291-1310
Novak, M., and El-Sharnouby, B., 1983. Stiffness and Damping Constant of Single Pile, Journal of the Geotechnical Engineering Division, ASCE, Vol.109, No.GT7, pp. 961-974
Novak, M., and Howell, J.F., 1977. Torsional Vibration of Pile Foundations, Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No.4, pp. 449-471.
Rix, G.J. and Stokoe, KHII.,1991, Correlation of initial tangent modulus and cone penetration resistance, Proc, 1 st International Symposium on Calibration Chamber Testing/ ISOCCT1, Postdam, New York, A.-B. Huang, ed., 351-362.
Srinivasulu, P. and C.V. Vaidyanathan, 1976. Handbook of Machine Foundation. New Delhi: Tata McGraw-Hill Publishing Company Ltd.